Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational homogenization for aerogel-like polydisperse open-porous materials using neural network--based surrogate models on the microscale (2403.00571v1)

Published 1 Mar 2024 in math.NA and cs.NA

Abstract: The morphology of nanostructured materials exhibiting a polydisperse porous space, such as aerogels, is very open porous and fine grained. Therefore, a simulation of the deformation of a large aerogel structure resolving the nanostructure would be extremely expensive. Thus, multi-scale or homogenization approaches have to be considered. Here, a computational scale bridging approach based on the FE$2$ method is suggested, where the macroscopic scale is discretized using finite elements while the microstructure of the open-porous material is resolved as a network of Euler-Bernoulli beams. Here, the beam frame based RVEs (representative volume elements) have pores whose size distribution follows the measured values for a specific material. This is a well-known approach to model aerogel structures. For the computational homogenization, an approach to average the first Piola-Kirchhoff stresses in a beam frame by neglecting rotational moments is suggested. To further overcome the computationally most expensive part in the homogenization method, that is, solving the RVEs and averaging their stress fields, a surrogate model is introduced based on neural networks. The networks input is the localized deformation gradient on the macroscopic scale and its output is the averaged stress for the specific material. It is trained on data generated by the beam frame based approach. The effiency and robustness of both homogenization approaches is shown numerically, the approximation properties of the surrogate model is verified for different macroscopic problems and discretizations. Different (Quasi-)Newton solvers are considered on the macroscopic scale and compared with respect to their convergence properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. Fricke, J., Emmerling, A.: Aerogels. Journal of the American Chemical Society 75(8), 2027–2036 (1992) https://doi.org/10.1111/j.1151-2916.1992.tb04461.x Rege [2023] Rege, A.: In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds.) Modeling the Structural, Fractal and Mechanical Properties of Aerogels, pp. 289–305. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-27322-4_12 Gent and Thomas [1959] Gent, A., Thomas, A.: The deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113 (1959) https://doi.org/10.1002/app.1959.070010117 Gibson et al. [1982] Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds.) Modeling the Structural, Fractal and Mechanical Properties of Aerogels, pp. 289–305. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-27322-4_12 Gent and Thomas [1959] Gent, A., Thomas, A.: The deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113 (1959) https://doi.org/10.1002/app.1959.070010117 Gibson et al. [1982] Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gent, A., Thomas, A.: The deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113 (1959) https://doi.org/10.1002/app.1959.070010117 Gibson et al. [1982] Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  2. Rege, A.: In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds.) Modeling the Structural, Fractal and Mechanical Properties of Aerogels, pp. 289–305. Springer, Cham (2023). https://doi.org/10.1007/978-3-030-27322-4_12 Gent and Thomas [1959] Gent, A., Thomas, A.: The deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113 (1959) https://doi.org/10.1002/app.1959.070010117 Gibson et al. [1982] Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gent, A., Thomas, A.: The deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113 (1959) https://doi.org/10.1002/app.1959.070010117 Gibson et al. [1982] Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  3. Gent, A., Thomas, A.: The deformation of foamed elastic materials. Journal of Applied Polymer Science 1(1), 107–113 (1959) https://doi.org/10.1002/app.1959.070010117 Gibson et al. [1982] Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  4. Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I.: The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. Series A: Mathematical, Physical Engineering Sciences 382, 25–42 (1982) https://doi.org/10.1098/rspa.1982.0087 Gibson and Ashby [1982] Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  5. Gibson, L.J., Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382(1782), 43–59 (1982) https://doi.org/10.1098/rspa.1982.0088 Warren and Kraynik [1997] Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  6. Warren, W., Kraynik, A.: Linear elastic behavior of a low-density kelvin foam with open cells. Journal of Applied Mechanics, 787–794 (1997) https://doi.org/10.1115/1.2788983 Dement’ev and Tarakanov [1970] Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  7. Dement’ev, A., Tarakanov, O.: Effect of cellular structure on the mechanical properties of plastic foams. Polymer Mechanics 6(4), 519–525 (1970) https://doi.org/10.1007/BF00856299 Jang et al. [2010] Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  8. Jang, W.-Y., Kyriakides, S., Kraynik, A.M.: On the compressive strength of open-cell metal foams with kelvin and random cell structures. International Journal of Solids and Structures 47(21), 2872–2883 (2010) https://doi.org/10.1016/j.ijsolstr.2010.06.014 Gaitanaros et al. [2012] Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  9. Gaitanaros, S., Kyriakides, S., Kraynik, A.M.: On the crushing response of random open-cell foams. International Journal of Solids and Structures 49(19-20), 2733–2743 (2012) https://doi.org/10.1016/j.ijsolstr.2012.03.003 Rege et al. [2021] Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  10. Rege, A., Aney, S., Milow, B.: Influence of pore-size distributions and pore-wall mechanics on the mechanical behavior of cellular solids like aerogels. Physical Review E 103(4), 043001 (2021) https://doi.org/10.1103/PhysRevE.103.043001 Rege [2021] Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  11. Rege, A.: Constitutive modeling of the densification behavior in open-porous cellular solids. Materials 14(11), 2731 (2021) https://doi.org/10.3390/ma14112731 Zhu et al. [2001] Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  12. Zhu, H.X., Hobdell, J.R., H., W.A.: Effects of cell irregularity on the elastic properties of 2d voronoi honeycombs. Journal of the Mechanics and Physics of Solids 49, 857–870 (2001) https://doi.org/10.1016/S0022-5096(00)00046-6 Zhu et al. [2006] Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  13. Zhu, H.X., Thorpe, S.M., Windle, A.H.: The effect of cell irregularity on the high strain compression of 2d voronoi honeycombs. International Journal of Solids and Structures 43(5), 1061–1078 (2006) https://doi.org/10.1016/j.ijsolstr.2005.05.008 Alsayednoor et al. [2013] Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  14. Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-d periodic representative volume element for random foam microstructures. Mechanics of Materials 66, 7–20 (2013) https://doi.org/10.1016/j.mechmat.2013.06.006 Alsayednoor and Harrison [2016] Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  15. Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-d foam-like representative volume elements. Mechanics of Materials 98, 44–58 (2016) https://doi.org/10.1016/j.mechmat.2016.04.001 Rege et al. [2019] Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  16. Rege, A., Hillgärtner, M., Itskov, M.: Mechanics of biopolymer aerogels based on microstructures generated from 2-d Voronoi tessellations. Journal of Supercritical Fluids 151, 24–29 (2019) https://doi.org/10.1016/j.supflu.2019.04.018 Jang et al. [2008] Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  17. Jang, W.-Y., Kraynik, A.M., Kyriakides, S.: On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 45(7-8), 1845–1875 (2008) https://doi.org/10.1016/j.ijsolstr.2007.10.008 Fu et al. [2011] Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  18. Fu, B., Luo, H., Wang, F., Churu, G., Chu, K.T., Hanan, J.C., Sotiriou-Leventis, C., Leventis, N., Lu, H.: Simulation of the microstructural evolution of a polymer crosslinked templated silica aerogel under high-strain-rate compression. Journal of Non-Crystalline Solids 357(10), 2063–2074 (2011) https://doi.org/10.1016/j.jnoncrysol.2011.02.049 Skibinski et al. [2019] Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  19. Skibinski, J., Cwieka, K., Haj Ibrahim, S., Wejrzanowski, T.: Influence of pore size variation on thermal conductivity of open-porous foams. Materials (Basel) 12(12), 2485–2494 (2019) https://doi.org/10.3390/ma12122017 Foray et al. [2022] Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  20. Foray, G., Randrianalisoa, J.H., Adrien, J., Maire, E.: X-ray tomography coupled with finite elements, a fast method to design aerogel composites and prove their superinsulation experimentally. Gels 8(11), 732 (2022) https://doi.org/10.3390/gels8110732 Chandrasekaran et al. [2021] Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  21. Chandrasekaran, R., Hillgärtner, M., Ganesan, K., Milow, B., Itskov, M., Rege, A.: Computational design of biopolymer aerogels and predictive modelling of their nanostructure and mechanical behaviour. Scientific Reports 11, 10198 (2021) https://doi.org/10.1038/s41598-021-89634-1 Aney and Rege [2023] Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  22. Aney, S., Rege, A.: The effect of pore sizes on the elastic behaviour of open-porous cellular materials. Mathematics and Mechanics of Solids 28(7), 1624–1634 (2023) https://doi.org/10.1177/10812865221124142 Miehe et al. [1999] Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  23. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity S imulation of texture development in polycrystalline materials. Computer Methods in Applied Mechanics and Engineering 171(3), 387–418 (1999) https://doi.org/10.1016/S0045-7825(98)00218-7 Smit et al. [1998] Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  24. Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Computer Methods in Applied Mechanics and Engineering 155(1), 181–192 (1998) https://doi.org/10.1016/S0045-7825(97)00139-4 Schröder [2014] Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  25. Schröder, J.: A numerical two-scale homogenization scheme: The FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT -method. CISM International Centre for Mechanical Sciences, Courses and Lectures 550, 1–64 (2014) https://doi.org/10.1007/978-3-7091-1625-8_1 Kouznetsova et al. [2001] Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  26. Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T.: An approach to micro-macro modeling of heterogeneous materials. Computational Mechanics 27(1), 37–48 (2001) https://doi.org/10.1007/s004660000212 Feyel [1999] Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  27. Feyel, F.: Multiscale FE22{}^{2}start_FLOATSUPERSCRIPT 2 end_FLOATSUPERSCRIPT elastoviscoplastic analysis of composite structures. Computational Materials Science 16(1), 344–354 (1999) https://doi.org/10.1016/S0927-0256(99)00077-4 Rege et al. [2016] Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  28. Rege, A., Schestakow, M., Karadagli, I., Ratke, L., Itskov, M.: Micro-mechanical modelling of cellulose aerogels from molten salt hydrates. The Royal Society of Chemistry 12, 7079–7088 (2016) https://doi.org/10.1039/C6SM01460G Rege et al. [2018] Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  29. Rege, A., Preibisch, I., Schestakow, M., Ganesan, K., Gurikov, P., Milow, B., Smirnova, I., Itskov, M.: Correlating synthesis parameters to morphological entities: Predictive modeling of biopolymer aerogels. Materials 1, 1–19 (2018) https://doi.org/10.3390/ma11091670 Abdusalamov et al. [2021] Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  30. Abdusalamov, R., Scherdel, C., Itskov, M., Milow, B., Reichenauer, G., Rege, A.: Modeling and simulation of the aggregation and the structural and mechanical properties of silica aerogels. The Journal of Physical Chemistry B 125(7), 1944–1950 (2021) https://doi.org/10.1021/acs.jpcb.0c10311 Somnic and Jo [2022] Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  31. Somnic, J., Jo, B.W.: Status and challenges in homogenization methods for lattice materials. Materials 15(2) (2022) https://doi.org/10.3390/ma15020605 Vigliotti et al. [2014] Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  32. Vigliotti, A., Deshpande, V.S., Pasini, D.: Non linear constitutive models for lattice materials. Journal of the Mechanics and Physics of Solids 64, 44–60 (2014) https://doi.org/10.1016/j.jmps.2013.10.015 Vigliotti and Pasini [2012] Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  33. Vigliotti, A., Pasini, D.: Linear multiscale analysis and finite element validation of stretching and bending dominated lattice materials. Mechanics of Materials 46, 57–68 (2012) https://doi.org/10.1016/j.mechmat.2011.11.009 Vigliotti and Pasini [2018] Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  34. Vigliotti, A., Pasini, D.: Chapter 8 - the design of skin panels for morphing wings in lattice materials. Butterworth-Heinemann, 231–246 (2018) https://doi.org/10.1016/B978-0-08-100964-2.00008-3 Wang and Stronge [2001] Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  35. Wang, X.L., Stronge, W.J.: Micro-polar theory for a periodic force on the edge of elastic honeycomb. International Journal of Engineering Science 39(7), 821–850 (2001) https://doi.org/10.1016/S0020-7225(00)00065-3 Wang and McDowell [2004] Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  36. Wang, A.-J., McDowell, D.L.: In-Plane Stiffness and Yield Strength of Periodic Metal Honeycombs . Journal of Engineering Materials and Technology 126(2), 137–156 (2004) https://doi.org/10.1115/1.1646165 Deshpande et al. [2001] Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  37. Deshpande, V.S., Fleck, N.A., Ashby, M.F.: Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids 49(8), 1747–1769 (2001) https://doi.org/10.1016/S0022-5096(01)00010-2 Masters and Evans [1996] Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  38. Masters, I.G., Evans, K.E.: Models for the elastic deformation of honeycombs. Composite Structures 35(4), 403–422 (1996) https://doi.org/10.1016/S0263-8223(96)00054-2 Koeppe et al. [2018] Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  39. Koeppe, A., Hernandez Padilla, C.A., Voshage, M., Schleifenbaum, J.H., Markert, B.: Efficient numerical modeling of 3d-printed lattice-cell structures using neural networks. Manufacturing Letters 15, 147–150 (2018) https://doi.org/10.1016/j.mfglet.2018.01.002 . Industry 4.0 and Smart Manufacturing Kirchdoerfer and Ortiz [2016] Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  40. Kirchdoerfer, T., Ortiz, M.: Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering 304, 81–101 (2016) https://doi.org/10.1016/j.cma.2016.02.001 Conti et al. [2018] Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  41. Conti, S., Müller, S., Ortiz, M.: Data-driven problems in elasticity. Archive for Rational Mechanics and Analysis 229, 79–123 (2018) https://doi.org/10.1007/s00205-017-1214-0 Korzeniowski and Weinberg [2022] Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  42. Korzeniowski, T.F., Weinberg, K.: Data-driven finite element computation of open-cell foam structures. Computer Methods in Applied Mechanics and Engineering 400, 115487 (2022) https://doi.org/10.1016/j.cma.2022.115487 Abdusalamov et al. [2021] Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  43. Abdusalamov, R., Pandit, P., Milow, B., Itskov, M., Rege, A.: Machine learning-based structure-property predictions in silica aerogels. Soft Matter 17(31), 7350–7358 (2021) https://doi.org/10.1039/D1SM00307K Pandit et al. [2024] Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  44. Pandit, P., Abdusalamov, R., Itskov, M., Rege, A.: Deep reinforcement learning for microstructural optimisation of silica aerogels. Scientific Reports 14(1), 1511 (2024) https://doi.org/10.1038/s41598-024-51341-y Moulinec et al. [2023] Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  45. Moulinec, C., Houzeaux, G., Borrell, R., Quintanas Corominas, A., Oyarzun, G., Grasset, J., Giuntoli, G., Vazquez, M.: A massively parallel multi-scale FE2 framework for multi-trillion degrees of freedom simulations. In: Proceedings of the Platform for Advanced Scientific Computing Conference. PASC ’23. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3592979.3593415 Klawonn et al. [2021] Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  46. Klawonn, A., Lanser, M., Rheinbach, O., Uran, M.: Fully-coupled micro-macro finite element simulations of the Nakajima test using parallel computational homogenization. Comput. Mech. 68(5), 1153–1178 (2021) https://doi.org/10.1007/s00466-021-02063-9 Klawonn et al. [2020] Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  47. Klawonn, A., Köhler, S., Lanser, M., Rheinbach, O.: Computational homogenization with million-way parallelism using domain decomposition methods. Comput. Mech. 65(1), 1–22 (2020) https://doi.org/10.1007/s00466-019-01749-5 Le et al. [2015] Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  48. Le, B.A., Yvonnet, J., He, Q.-C.: Computational homogenization of nonlinear elastic materials using neural networks. International Journal for Numerical Methods in Engineering 104(12), 1061–1084 (2015) https://doi.org/10.1002/nme.4953 Fritzen et al. [2019] Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  49. Fritzen, F., Fernandez, M., Larsson, F.: On-the-fly adaptivity for nonlinear twoscale simulations using artificial neural networks and reduced order modeling. Frontiers in Materials 6 (2019) https://doi.org/10.3389/fmats.2019.00075 Gupta et al. [2023] Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  50. Gupta, A., Bhaduri, A., Graham-Brady, L.: Accelerated multiscale mechanics modeling in a deep learning framework. Mechanics of Materials 184, 104709 (2023) https://doi.org/10.1016/j.mechmat.2023.104709 Eidel [2023] Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  51. Eidel, B.: Deep CNNs as universal predictors of elasticity tensors in homogenization. Computer Methods in Applied Mechanics and Engineering 403, 115741 (2023) https://doi.org/10.1016/j.cma.2022.115741 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  52. Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Computer Methods in Applied Mechanics and Engineering 384, 113952 (2021) https://doi.org/10.1016/j.cma.2021.113952 Rocha et al. [2021] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  53. Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: On-the-fly construction of surrogate constitutive models for concurrent multiscale mechanical analysis through probabilistic machine learning. Journal of Computational Physics: X 9, 100083 (2021) https://doi.org/10.1016/j.jcpx.2020.100083 Eivazi et al. [2023] Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  54. Eivazi, H., Tröger, J.-A., Wittek, S., Hartmann, S., Rausch, A.: FE2 computations with deep neural networks: Algorithmic structure, data generation, and implementation. Mathematical and Computational Applications 28(4) (2023) https://doi.org/10.3390/mca28040091 Rocha et al. [2023] Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  55. Rocha, I.B.C.M., Kerfriden, P., van der Meer, F.P.: Machine learning of evolving physics-based material models for multiscale solid mechanics. Mechanics of Materials 184, 104707 (2023) https://doi.org/10.1016/j.mechmat.2023.104707 Feng et al. [2022] Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  56. Feng, N., Zhang, G., Khandelwal, K.: Finite strain FE2 analysis with data-driven homogenization using deep neural networks. Computers and Structures 263, 106742 (2022) https://doi.org/10.1016/j.compstruc.2022.106742 Niekamp et al. [2023] Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  57. Niekamp, R., Niemann, J., Schröder, J.: A surrogate model for the prediction of permeabilities and flow through porous media: a machine learning approach based on stochastic Brownian motion. Computational Mechanics 71(3), 563–581 (2023) https://doi.org/10.1007/s00466-022-02250-2 Deng et al. [2024] Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  58. Deng, S., Hosseinmardi, S., Wang, L., Apelian, D., Bostanabad, R.: Data-driven physics-constrained recurrent neural networks for multiscale damagemodeling of metallic alloys with process-induced porosity. Computational Mechanics (2024) https://doi.org/10.1007/s00466-023-02429-1 Gajek et al. [2021] Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  59. Gajek, S., Schneider, M., Böhlke, T.: An FE-DMN method for the multiscale analysis of thermodynamical composites. Computational Mechanics 69, 1087–1113 (2021) https://doi.org/10.1007/s00466-021-02131-0 Broyden [1970] Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  60. Broyden, C.G.: The Convergence of a Class of Double-rank Minimization Algorithms: 2. The New Algorithm. IMA Journal of Applied Mathematics 6(3), 222–231 (1970) https://doi.org/10.1093/imamat/6.3.222 Öchsner [2023] Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  61. Öchsner, A.: Euler-Bernoulli Beams and Frames, pp. 103–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09673-0_3 Kassimali [2011] Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  62. Kassimali, A.: Matrix analysis of structures, 2nd edition edn. Cengage Learning (2011). https://www.academia.edu/36080840/Matrix_Analysis_of_Structures_2nd_ed Becker and Sokolow [2015] Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  63. Becker, R., Sokolow, A.: Stress Averaging for a Beam Network for Use in Hierachical Multiscale Framework. ARL-MR-0887 (2015) https://apps.dtic.mil/sti/citations/ADA619976 Abadi et al. [2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  64. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Software available from tensorflow.org (2015). https://www.tensorflow.org/ Aney et al. [2023] Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  65. Aney, S., Pandit, P., Ratke, L., Milow, B., Rege, A.: On the origin of power-scaling exponents in silica aerogels. Journal of Sol-Gel Science and Technology (2023) https://doi.org/10.1007/s10971-023-06156-0 Hendrycks and Gimpel [2016] Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  66. Hendrycks, D., Gimpel, K.: Gaussian Error Linear Units (GELUs) (2016). https://doi.org/10.48550/arXiv.1606.08415 Kingma and Ba [2017] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  67. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017). https://doi.org/10.48550/arXiv.1412.6980 Nocedal and Wright [2006] Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  68. Nocedal, J., Wright, S.J.: Numerical optimization, 2e edn. Springer, New York, NY, USA (2006). https://link.springer.com/book/10.1007/978-0-387-40065-5 Byrd et al. [1987] Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  69. Byrd, R.H., Nocedal, J., Yuan, Y.-X.: Global convergence of a class of quasi-newton methods on convex problems. SIAM Journal on Numerical Analysis 24(5), 1171–1190 (1987) https://doi.org/10.1137/0724077 Dai [2002] Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  70. Dai, Y.-H.: Convergence properties of the bfgs algoritm. SIAM Journal on Optimization 13(3), 693–701 (2002) https://doi.org/10.1137/S1052623401383455 Wolfe [1969] Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036 Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036
  71. Wolfe, P.: Convergence conditions for ascent methods. SIAM Review 11(2), 226–235 (1969) https://doi.org/10.1137/1011036

Summary

We haven't generated a summary for this paper yet.